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On the topology of vortex lines and tubes

O. U. VELASCO FUENTES
Departamento de Oceanografı́a Fı́sica, CICESE, Ensenada, Baja California, México
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This paper examines the widespread idea that vortex lines and tubes must either close
on themselves or extend to the boundary of the fluid. A survey of the origins of this
misconception, and of earlier attempts to set it right, is followed by an analysis of
simple flows exhibiting vortex lines and tubes which do not fit those shapes. Two types
of vortex lines are discussed: dense, which comprise open lines of infinite length but
confined in a finite region, and separatrix, which comprise lines that begin or finish
within the fluid, at points where the vorticity is null. The presence of these vortex lines
in a vortex tube affects its topology in the following ways. Vortex tubes formed by
dense vortex lines have infinite length; they self-intersect an infinite number of times
but do not close on themselves. Vortex tubes formed by separatrix vortex lines (and
either closed or open vortex lines) are torn apart at the points where the vorticity
is null. Vortex tubes exclusively composed of separatrix vortex lines begin or finish
at points or surfaces within the fluid; in this particular situation the vortex tube has
zero strength.

1. Introduction
Almost 150 years ago Helmholtz (1858) published a paper, Über Integrale der

hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, that
launched the study of vortex dynamics and exercised a major influence on other areas
of physics and mathematics (see e.g. Epple 1998; Darrigol 2005). In this epoch-making
paper Helmholtz studied the motion of an ideal fluid subjected to conservative forces
but he did not assume that the velocity is the gradient of a potential function, as
was common at the time. He began by showing that the motion of an infinitesimal
volume of a continuous medium can be decomposed into a translation, compression
or expansion in three mutually orthogonal directions, and a rotation. For a more
intuitive understanding of his results, Helmholtz introduced two new concepts: vortex
line, which is a line that at all its points has the direction of the instantaneous
vorticity of fluid particles; and vortex filament, which is a portion of fluid limited by
the vortex lines that pass through the perimeter of an infinitesimal element of surface.
With these definitions, his main results can be stated as follows: (1) fluid particles
originally free of vorticity remain free of vorticity, (2) fluid particles which at any
time form a vortex line, however they move, continually form a vortex line, and (3)
the product of the cross-section and the vorticity of a vortex filament is constant on
the whole length of the filament and does not change in time. The constancy of the
flux of vorticity along the vortex filament is a kinematic theorem: Helmholtz proved
it using solely the divergenceless character of the vorticity field. From this theorem
Helmholtz derived an incorrect corollary: vortex filaments must close on themselves
or extend to the boundary of the fluid. He substantiated his conclusion as follows:
if the vortex filament ended somewhere within the fluid then it would be possible
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to construct a closed surface through which the flux of vorticity would not be zero
(which is impossible by virtue of the divergence theorem and the identity ∇ · ω = 0).
This argument, however, is incomplete and does not prove the corollary (Chorin &
Marsden 1993).

The simple shapes and invariant strengths of Helmholtz’s vortices captured the
imagination of Thomson (1867), who hypothesized that atoms were vortices in an
all-pervading, ideal fluid. In order to advance his conjecture, which turned out to
be erroneous, Thomson (1869) further developed the mathematical theory of vortex
motion. He established the circulation theorem that now bears his name† and showed
that Helmholtz’s two theorems on vortex filaments, namely that vorticity flux is
uniform along the filament and that it is constant in time, also hold for a vortex
tube, which he defined as a surface formed by all the vortex lines that pass through
a closed contour. Surprisingly, he derived an analogous corollary: vortex tubes must
close on themselves or extend to the boundary of the fluid. Maxwell (1875) arrived at
the same conclusion in his essay published in the ninth edition of the Encyclopædia
Britannica, and a few years later Lamb (1879) derived a similar result for vortex lines.

When misconceptions have such illustrious origins it is hardly surprising that they
spread widely. Thus, most classic textbooks on fluid mechanics contain incorrect
assertions about vortex lines, filaments or tubes (Lamb 1932; Goldstein 1960;
Sommerfeld 1950; Lighthill 1963; Batchelor 1967). And although some of the errors
have been exposed from time to time (Hadamard 1903; Truesdell 1954; Chorin &
Marsden 1993) they continue to appear in modern texts (see e.g. Saffman 1995; Kundu
& Cohen 2002; Cottet & Koumoutsakos 2004) and in research papers published in
leading scientific journals (see e.g. Widnall 1975; Saffman 1990; Ottino 1990; Robinson
1991; Sarpkaya 1996; Webster & Longmire 1998; Zhang, Shen & Yue 1999; Nolan
2001; Dickinson 2003; Chadwick 2005; Barranco & Marcus 2005).

The constancy of the flux along vortex tubes depends only on the vorticity field
being divergenceless. Therefore, vector tubes of any vector field with this property
have a constant flux too. Oddly, the erroneous assertion that vector lines or vector
tubes must close on themselves or extend to the boundary has also been made about
other divergenceless vector fields (Feynman, Leighton & Sands 1964; Fetter 1967;
Batchelor 1967, Cingoski et al. 1996).

The object of the present study is to show, through analytic examples, that the
possible shapes of vortex lines (§ 2) and vortex tubes (§ 3) is more diverse and intricate
than generally believed.

2. Vortex lines
Vortex lines are, by definition, the solution curves of

dx
ds

= ω(x), (2.1)

where ω is the vorticity field, x denotes the position in three-dimensional space, and s

is a parameter. If x = X when s = 0, the solution is x = Φs(X), where X =Φs=0(X), i.e.
a point traces a curve from X to x as the independent variable changes from 0 to s.
Mathematically, (2.1) defines a dynamical system and the solution Φs is called flow or

† William Thomson became Baron Kelvin of Largs in 1892; Hermann Helmholtz was ennobled
in 1882 and added von to his name. We will, however, use their names as they appeared on the
papers discussed here.
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(a) (b) 

Figure 1. (a) Vortex surfaces of the vorticity field ω = (x, −y, 0); the boundaries between
black and grey stripes are vortex lines; the black lines and arrows on the top edges of the flat
surfaces represent, respectively, vortex lines and the direction of the vorticity vector. (b) These
straight vortex lines appear to cross but, when represented in the space (x, y, s), turn out to
be five solution curves of equation (2.1) that do not cross (see text).

motion (these are not to be confused with the actual flow or motion of fluid particles).
The solution is unique if there is a constant L such that, in an interval s, the flow
Φs produced by ω increases the distance between two arbitrary points no more than
L times (Lipschitz condition, see e.g. Arnold 1973). In this case only one vortex line
can pass through each point and thus vortex lines cannot intersect. Moreover, since
∇ · ω = 0, the flow Φs preserves both volume and topology. The former means that
Φs maps each region of space to another region of equal volume; the latter means
that any region is mapped to a topologically equivalent region (e.g. a closed curve
is mapped to a closed curve and not to, say, an open curve or two closed curves).
In the analysis of the topology of vortex lines and tubes no reference will be made
to the dynamical equations that govern the motion of the fluid; therefore our results
are valid for vector lines and tubes of any divergenceless vector field, such as the
velocity field of an incompressible fluid (the continuity equation is then ∇ · u = 0) or
the magnetic field B (one of Maxwell’s equations is precisely ∇ · B = 0).

Vortex lines can begin or end within the fluid at points where ω =0 (called
equilibrium or fixed points of equation (2.1)). Some authors consider that the
continuity of vector lines beyond fixed points is a matter of convention (Kellogg
1929; Saffman 1995), but assuming that vector lines continue beyond these points
usually contradicts the theorem of uniqueness of solutions. Consider, for instance,
the parallel flow given by u = (0, 0, xy) which has the associated vorticity field
ω =(x, −y, 0). Every point of the z-axis is an equilibrium point of the vorticity
field (i.e. ω(0, 0, z) = 0) and the vortex surfaces in the neighbourhood of this line are
as illustrated in figure 1(a). Apparently these surfaces (and the vortex lines they are
made of) intersect transversally on the z-axis. This, however, is not possible because
ω satisfies the Lipschitz condition and hence only one vortex line passes through
any point. We can see what is happening around the equilibrium points by using a
different representation of the vortex lines. Since these are solution curves of equation
(2.1), they can also be represented in the extended space (x, y, z, s). Note, however,
that in our example the vorticity is two-dimensional: the component in the z-direction
is identically zero and the other components do not depend on z. We can thus drop
the z coordinate and use the space (x, y, s). Figure 1(b) represents in this space the
vortex lines that appear to cross when viewed in the physical space (x, y, z). The two
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straight vortex lines are in fact five solutions: the equilibrium solution (represented
by a black thick line), two solutions that asymptotically approach the equilibrium
point as s → ∞ (grey thick lines) and two solutions that asymptotically approach
the equilibrium point as s → −∞ (black thin lines). The solutions that approach the
equilibrium point correspond to vortex lines that end within the fluid; the solutions
that move away correspond to vortex lines that begin within the fluid. By analogy
with dynamical systems these may be called separatrix vortex lines.

It has long been known that the simple, closed loops of vorticity referred to in
textbooks are exceptional. In general, a vortex line has infinite length and passes
infinitely often infinitely close to itself (Hadamard 1903; Truesdell 1954; Moffatt
1969; Saffman 1995). This is a consequence of the recurrence theorem of Poincaré
(1890) which can be paraphrased as follows: if a flow has only bounded vortex lines,
then for any volume, however small, there exist vortex lines that intersect the volume
an infinite number of times. Note that a closed vortex line, being a periodic solution
of equation (2.1), is understood to pass infinitely often through each of its points.

A case in point is that of spherical and ring vortices with swirl (Moffatt 1969, 1988).
In these flows the vorticity can be written, using cylindrical coordinates (r, θ, z), as
follows:

ω =

(
−1

r

∂Ψ

∂z
, ωθ ,

1

r

∂Ψ

∂r

)
, (2.2)

where Ψ = Ψ (r, z) is the vorticity function and ωθ = ωθ (r, z) is the azimuthal vorticity.
Vortex lines lie on doughnut-shaped surfaces where the vorticity function Ψ has a
constant value, say p. Vortex lines coil around these surfaces, so they are described
by the equations

dθ

ds
= Ωθ (p),

dλ

ds
= Ωλ(p), (2.3)

where θ is the angle around the symmetry axis (i.e. it is the same angle as the
cylindrical coordinates), λ is the angle around the centreline of the torus, and Ωθ and
Ωλ are the corresponding rotation numbers. If the ratio Ωθ/Ωλ is a rational number
the vortex line closes on itself; if it is irrational the vortex line winds around the torus
without ever closing on itself, thus densely filling the surface. Since rational numbers
are the exception and irrational numbers the rule, only in exceptional cases do vortex
lines form closed loops.

Something analogous happens with streamlines in Taylor vortices, which occur in
the fluid contained between two coaxial cylinders rotating at different speeds. Each
vortex has the shape of a doughnut with a squared cross-section (Taylor 1923, see
his figure 5) and fluid particles rotate both around the axis and around the vortex’s
centreline. When the ratio between the two rotation periods is a rational number
the streamline closes on itself; when it is irrational the streamline has infinite length
and densely fills a surface. A more complicated situation occurs in the quadratic flow
inside a sphere studied by Bajer & Moffatt (1999). This is a steady Stokes flow with
chaotic streamlines in at least part of the flow domain; thus streamlines in these
regions densely fill a finite volume. Of course, in these examples it is the streamlines
rather than the vortex lines that are dense but, since the two velocity fields are
divergenceless, one could conceive of vorticity fields with corresponding topologies.
In point of fact, Moffatt (1969) suggests that vortex lines in a turbulent blob are
generally dense.
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(a) (b)

Figure 2. Vortex tubes of infinite length in a vortex ring with swirl. (a) Successive intersections
of a tube with a meridional plane shows that the tube intersects with itself but never closes.
(b) A three-dimensional view of a segment of this tube (the boundaries between black and
grey stripes are vortex lines).

3. Vortex tubes
Hadamard (1903) noted that the existence of dense vortex lines has consequences

for the topology of vortex tubes, but he was too concise and wrote only that “similar
observations apply to vortex tubes”. Others have failed to mention these consequences
and, along with statements about the existence of dense vortex lines, still include the
assertion that vortex tubes must be closed or extend to the boundary (see e.g. Truesdell
1954; Chorin & Marsden 1993; Saffman 1995).

So let us analyse the topology of a vortex tube in spherical and ring vortices with
swirl. As discussed above, in these flows vortex lines are dense or, exceptionally, form
closed loops. Depending on the location of the contour C used to generate the vortex
tube, this may be formed by (1) closed vortex lines only, (2) dense vortex lines only, or
(3) a combination of both closed and dense vortex lines. Instances (1) and (2) occur
when C encircles one of the doughnut-shaped surfaces Ψ = const.; then if the rotation
number of this surface is rational (1) occurs, and if it is irrational (2) occurs. In both
cases the vortex tube is identical to the doughnut-shaped surface Ψ = const., so it
is a closed surface. Instance (3) occurs when C intersects different doughnut-shaped
surfaces Ψ = const.; in this case the tube has infinite length and never closes. At first
sight this situation seems conflicting, if not impossible: a finite cross-section multiplied
by an infinite length would result in an infinite volume. A vortex tube, however, may
intersect with itself without being closed: a tube of infinite length may thus exist
within a finite region of space. As an example, consider the vortex tube formed by
the vortex lines passing through C, which is a small circle on a meridional plane (e.g.
the perimeter of the black circle in figure 2a). The ratio Ωθ/Ωλ varies continuously
across the tori intersected by C, therefore through C pass dense vortex lines as well
as closed vortex lines. Figure 2(a) shows the first three intersections of the tube with
the meridional plane (the initial one is shown in black and subsequent intersections
are shown in grey). In this particular example the cross-section has constant area
but its perimeter increases continuously. It is clear that the vortex tube will intersect
endlessly with itself but it will never close. Figure 2(b) shows the first turn that the
tube makes around the symmetry axis.

Similarly, Taylor vortices display stream tubes that self-intersect an infinite number
of times without closing on themselves. This is a counter-example to the statement
that in an incompressible fluid a stream tube must either be closed or extend to the
boundary (Batchelor 1967).
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(a) (b)

Figure 3. (a) The vorticity field given by equation (3.2) represented in a meridional plane: all
vortex lines are closed, except for the separatrix vortex lines. (b) The vortex tube formed by
all such separatrix vortex lines has zero strength and begins and ends on the planes z = −1, 1,
respectively.

The vorticity flux (
∫

ω · ds) out of any reducible closed surface is zero by virtue
of the divergence theorem and the identity ∇ · ω =0. This property is invoked when
arguing that a vortex tube cannot end within the fluid. For then it would be possible
to find a closed surface out of which the flow of vorticity would be non-zero. The
argument assumes that the strength of the vortex is finite, but if it is zero the tube
can end at a surface within the fluid without contradicting the solenoidal character of
the vorticity field (this has been recognized by Chorin & Marsden 1993). Consider the
following example: a fluid of infinite extent which is everywhere at rest except in the
disk r < 2, −1 <z < 1, where the velocity and vorticity fields are given, respectively,
by

u = f (r)g(z)θ , (3.1)

ω = −f (r)g′(z)r +

(
f ′(r) +

f (r)

r

)
g(z)k, (3.2)

with f (r) = (r − 1)5 − 2(r − 1)3 + (r − 1) and g(z) = z4 − 2z2 + 1. This is an axially
symmetric flow consisting of two adjacent jets circling in opposite directions. The
geometry of the vortex lines in a meridional plane is shown in figure 3(a). In this
plane all vortex lines are closed except for the two straight lines, which begin and end
within the fluid. If we construct a vortex tube by taking all the vortex lines that pass
through the circle r = 1, z =0 we obtain a cylindrical vortex tube of zero strength
that begins on the plane z = −1 and ends on the plane z = 1 (see figure 3b).

The null value of the strength also allows vortex tubes to begin or end at points
within the flow domain. Take for instance a fluid of infinite extent that is everywhere
at rest except within the bulb r < g(z), −1 < z < 1, where the velocity and vorticity
fields are given, respectively, by

u = f (r, z)g(z)θ , (3.3)

ω = −∂f (r, z)g(z)

∂z
r +

(
∂f (r, z)

∂r
+

f (r, z)

r

)
g(z)k, (3.4)

with g(z) = z4 − 2z2 + 1 and f (r, z) = [r − g(z)]5 − 2[r − g(z)]3 + [r − g(z)]. This is
also a circular, axially symmetric flow, but now the radial extent of the motion
diminishes with the distance from the plane z = 0. The geometry of the vortex lines
in a meridional plane is shown in figure 4(a). In this plane all vortex lines are closed
except for two, which begin at (r, z) = (0, −1) and end at (r, z) = (0, −1). The vortex
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(a) (b)

Figure 4. (a) The vorticity field given by equation (3.4) represented in a meridional plane.
All vortex lines are closed, except for the separatrix vortex lines, which begin and end at
two common points. (b) The vortex tube formed by all such separatrix vortex lines has zero
strength and begins and ends at the points (r, z) = (0, −1) and (r, z) = (0, 1), respectively.

(a) (b)

Figure 5. (a) The vorticity field given by equation (3.6) represented in the plane (y, z). All
vortex lines in this plane are closed, except for the separatrix vortex line. (b) From left to right:
a closed vortex tube, a vortex tube with an infinitesimal opening, and a vortex tube with a
finite opening.

tube, which is the solid of revolution generated by these vortex lines, also begins and
ends at these points (figure 4b).

The existence of equilibrium points of the vorticity field also has consequences for
the topology of vortex tubes of finite strength. Consider a fluid that is everywhere at
rest except within the region −∞ <x < ∞, −1 <y < 1, −1 <z < 1 where the velocity
and vorticity fields are given, respectively, by

u = f (y)g(z)i, (3.5)

ω = f (y)g′(z) j − f ′(y)g(z)k, (3.6)

with f (y) = y5 − 2y3 + y and g(z) = z4 − 2z2 + 1. This is the parallel flow of two
jets streaming in opposite directions along the x-axis. In a plane perpendicular to
the flow the vortex lines have the geometry shown in figure 5(a); all of them are
closed except for the separatrix vortex line that starts at (y, z) = (0, −1) and ends
at (y, z) = (0, 1). Let us consider the vortex tubes formed by vortex lines that pass
through a small circle located on the plane (x, y). If the circle does not intersect the
x-axis the vortex tube contains only closed vortex lines; the tube is thus also closed
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(a)

C

C1

C2

(b)

Figure 6. (a) Geometry of the vorticity field given by equation (3.8). All vortex lines lying on
the plane (x, y) diverge from the equilibrium point at the origin, whereas two separatrix vortex
lines lying on the plane (x, z) end at this point. (b) The vortex lines passing through contour
C generate a vortex tube of finite strength that is torn apart at the origin; beyond this point
there are no tubes but open surfaces because C cannot be mapped into C1 and C2.

and has the shape of a torus. If the circle touches the x-axis at exactly one point the
vortex tube contains one separatrix vortex line; the tube has the shape of a squared
doughnut but is not closed: it remains open by a slit of infinitesimal width. Finally, if
the circle intersects the x-axis at two points the vortex tube contains two separatrix
vortex lines and is torn apart at the extreme points of these lines. These shapes are
illustrated in figure 5(b).

Our final example is a flow with the following velocity and vorticity distributions

u = 2yzi + z3/3 j + (xy − y3/3)k, (3.7)

ω = (x − y2 − z2)i + y j − 2zk. (3.8)

The geometry of this vorticity field can be summarized as follows (figure 6a). There
is an equilibrium point at the origin, two separatrix vortex lines on the plane (x, z)
begin at infinity and end at this point, and an infinite number of vortex lines on
the plane (x, y) begin at the origin and end at infinity. Let C be a closed contour
on the plane (y, z) that intersects transversally the two separatrix vortex lines (see
figure 6a). The vortex lines that pass through C generate a vortex tube that is torn
apart at the equilibrium point (x, y, z) = (0, 0, 0). The two branches formed beyond
the equilibrium point are not tubes but folded surfaces (figure 6b). The vortex lines
shown in the figure were computed by integrating (2.1) for a short interval s, so that
the gap at the fork and all along the two branches is clearly visible. If the interval
of integration is increased the width of the gap decreases; and in the limit s → ∞
the width becomes infinitely small. Yet the gap never closes because the branches
lack two vortex lines which do not pass through C (they start at the null point and
go in the positive x direction). The tearing up of the tube must happen because the
flow Φs generated by (2.1) preserves topology: a contour cannot be mapped into two
contours; thus C cannot be mapped into C1 and C2 (figure 6a).

4. Conclusions
Vortex lines and tubes have been essential in describing and understanding the

motion of fluids ever since Helmholtz (1858) published his seminal memoir on vortex
motion. There, he established the fundamental dynamical laws of vorticity as well as
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a number of kinematic theorems. In particular, he proved that the vorticity flux is
constant along a vortex filament and from this he concluded, incorrectly, that vortex
filaments must close on themselves or extend to the boundary of the fluid. Soon
afterwards the same deduction was made about vortex tubes (Thomson 1869) and
vortex lines (Lamb 1879). This corollary is still widely accepted today even though
its incorrectness was pointed out about one hundred years ago (Hadamard 1903).
The analytic examples presented here display vortex lines and tubes which do not
fit into those traditional categories. Thus in these simple flows we find dense vortex
lines, which are bounded lines of infinite length that never close on themselves, and
separatrix vortex lines, which are lines that begin or end within the fluid, at points
where the vorticity is zero. For vortex tubes, the possibilities are wider because they
may contain any combination of the various types of vortex lines. The following
are representative examples. Vortex tubes formed by dense vortex lines (alone or
in combination with closed lines) have infinite length, they self-intersect an infinite
number of times but do not close on themselves. Vortex tubes formed by separatrix
vortex lines and either open or closed lines are torn apart at the points where the
vorticity is null; beyond these points the vortex surface becomes a set of stripes.
Vortex tubes exclusively composed of separatrix vortex lines begin or finish at points
or surfaces within the fluid; in this particular situation the vortex tube is also
characterized as having zero strength.

I am grateful to José Luis Ochoa and an anonymous reviewer for valuable comments
and criticisms on an earlier version of this paper. This work was supported by
CONACyT (México) under grant number 43043.
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